

Global energy balance: prominence of clouds

Importance of orographic clouds

- Orographic precipitation is crucial for fresh water resources (Roe, 2005)
- Intense precipitation will increase in a warmer climate (Boucher et al., 2013)

Foto: SLF

Differences between liquid and ice clouds

What do we know about mixed-phase clouds?

Do mixed-phase clouds matter?

REF: control simulation, NEW: detrainment from convective clouds is liquid if the cloud top is below 600 hPa → Implications for climate change?

Forbes et al., 2016

Can observations from JFJ help?

Working principle of HOLIMO

Observations with HOLIMO

Henneberger et al., AMT, 2013

Observation of mixed-phase clouds

North-West (NW)

Jungfraujoch (JFJ)

South-East (SE)

Are there differences in INPs depending on wind direction?

Differences in updraft velocity - inferred from model results

Origin of ice crystals?

Sources of ice crystals in orographic clouds

Courtesy: Alex Beck

Setup to observe blowing snow at Sonnblick Observatory

Courtesy: Alex Beck

Detection of surface processes (no cloud)

Surface-based processes should cause:

- Mainly irregular crystals
- Decrease of the ice crystal number concentration with height

→ Strong influence from surface processes

Impact of near-surface processes (in-cloud)

Surface-based processes should cause:

- mainly irregular ice crystals
- decrease of the ice crystal number concentration with height

- → Similar height dependence for different IC habits
- → Not only surface-based processes

Mountain-top observations influenced by surface processes

Measurements at Sonnblick observatory (SBO), Austria

Beck et al., ACP, 2018

Origin of ice crystals?

Beck et al., ACP, 2018

Global climate change

Courtesy: Remo Dietlicher

Response of clouds to CO₂ doubling

- → The net radiative feedback due to all cloud types is likely positive
- → Rising of the melting level causes more liquid instead of ice clouds → more reflection of shortwave radiation → negative cloud feedback

Sensitivity of the equilibrium climate sensitivity (ECS) to the present-day supercooled liquid cloud fraction (SLF)

→ The higher SLF (liquid water/(liquid+ice water)) in the current climate, the smaller the negative cloud phase feedback → larger ECS

Similar results in other models?

Sensitivity simulations with ECHAM6-HAM2

Simulation	Description
REF	Release version ECHAM6.3-HAM2.3 (Tegen et al., 2019; Neubauer et al., 2019)
ALL_ICE	no supercooled liquid water at T < 0 °C
ALL_LIQ	only supercooled liquid water at T > -35 °C

Present-day supercooled liquid fraction at -10°C

ECHAM also underestimates SLF, but less than CESM

→ do we also underestimate ECS? And if so, by how much?

Equilibrium climate sensitivity (ECS)

No ECS increase between simulation REF and ALL_LIQ in ECHAM6-HAM2 despite the overall higher cloud feedback → why not?

Take-home messages

- Can we predict ice crystal number concentrations from INP concentrations? no
 - Must consider other sources of ice
 - Secondary ice production
 - Surface sources (from below)
 - Feeding crystals (from above)
 - Must continue measurements of INPs at JFJ for a better characterization of primary ice
- The impact of mixed-phase clouds on climate remains an open question.
 - Further in-situ measurements of cloud properties, such as taken at the JFJ, are needed to validate our climate models

